Prove that (a+b)/(an - bn) , if n is a positive even integer.

Prove that (a+b)/an-bn , if n is a positive even integer

Proof:

We prove it with the help of mathematical induction.

CASE – I

 For = n=2

an – bn  = a2  - b2
⇒ (a+b)/( a2  - b2)

CASE-I is true for n=2.

CASE-II

Suppose it is true for n=k , where k is a positive even integer.

⇒(a+b)/( ak  - bk)           says (1)

We prove it for n=k+2

an – bn  = ak+2  - bk+2
= ak . a2  - bk . b2

Adding & Subtracting ak . b2 , we have

=  ak . a2  - bk . b2 + ak . b2 - ak . b2
=  ak . a2  - ak . b2 + ak . b2 - bk . b2
= ak (a2  - b2) +  b2 (ak - bk )              says (2)

We know that

⇒(a+b)/( a2  - b2)
⇒(a+b)/ ak (a2  - b2)       says (3)

From (1) & (3), we have

⇒(a+b)/ ak (a2  - b2) +  b2 (ak - bk )

From (2), we have

⇒(a+b)/( an - bn)

CASE-II is true for n=k+2

Hence proved (a+b)/( an - bn) is true for every positive even integer.
Prove that (a+b)/(an - bn) , if n is a positive even integer.

Prove that (a+b)/(an - bn) , if n is a positive even integer.

Amna Mughal

Graphic Designer | SEO Optimizer | Blogger | Java Developer | Photographer.

No comments: